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ions. Therefore. such calculations do not stringently test the various bare potentials and 
dielectric functions which have been obtained In AI and Pb, however, conduction electron 
screening is much greater (on average, the actual phonon frequencies at the zone boundary 
are about 35% of the un screened ionic lattice frequencies in AI, compared with 80% in 
Na), and the tests of modifications of the potentials are correspondingly more sensitive. 

In most of this work we have used a local Heine-Abarenkov (1964, to be referred to as 
HA) model potential. Before dielectric screening this potential consists of a series of square 
wells' of depth Al for each angular momentum 1, inside a radius RMJ and a Coulomb poten
tial - Zjr outside this radius. The values of AlE) at several values of energy E are obtained 
from spectroscopic data for the free atom and then extrapolated to the energy of the solid 
(which involves RM). They set Al = A2 for l > 2. Shaw (1968) modified this by using a model 
potential only for those values of 1 for which there is an ionic core state, and by allowing 
RM to vary with I and with energy. The potential was then variationally optimized according 
to the prescription of Cohen and Heine (1961). The full non-locality and energy dependence 
of the potential were included at all stages. 

Using the local HA potentiaL we have calculated the dispersion curves for Na, AI and 
Pb, at variable volume, for a number of dielectric functions. These are discussed and com
pared with experimental zero pressure dispersion curves and pressure derivatives of the 
elastic constants in § 3. Where possible we have also performed calculations with Shaw's 
potential and with the 'semi-nonlocal't version of the HA potent ial calculated by Animalu 
(1966). This gives an estimate of the differences in the bare mo del potentials. Shaw and 
Pynn (1969) have investigated the effects ofthe non-locality of the potential, and of exchange 
and correlation corrections to the dielectric function, on calculated phonon frequencies in 
hexagonal close-packed Mg. Our calculations for these cubic metals therefore supple
ment theirs, although we have studied the dielectric function more extensively. We have also 
estimated the effectiv~ mass corrections (Shaw 1969 b) to the dispersion curves in AI. 

In §4 we have tested our calculated pressure derivatives of the maximum phonon 
frequencies by calculating the pressure derivatives of the superoonducting transition tem-
peratures of AI and Pb using Hodder's (1969) technique. . 

We conclude, in § 5, that, when screened by a suitable dielectric function, the local HA 
potential is quite reliable in predicting these properties of simple metals, while the Shaw 
potential is even better where we have used it at zero pressure. 

2. Theory and calculation details 
In the harmonic approximation, the phonon frequencies OJ2(q, Ji) where q is the phonon 

wave vector and Ji the polarization index, are the eigenvalues of the dynamical matrix 
Daj1(q). Along the principal directions of a cubic crystal they are given simply by 

OJ2(q,}1) = OJ~(q, Ji) + wi(q, Ji) - OJ~(q, pl· 
The OJ;(q, Ji) arise from the direct Coulomb interaction between the (point) ions, and are 
treated by Ewald's method (Sham 1965). The contribution from the exchange overlap 
between cores, wi(q, II), is negligible in Na (Vosko 1964) and is expected to be small in 
Al and Pb also. It may be treated in the Born-Mayer approximation (Sham 1965) when 
necessary. The final term, OJ~(q, p), arises from the screening of the ions' vibration by the 
conduction electrons and is given by (Vosko et al. 1965) 

OJ~(q,Ji) = OJ~L~q + ~~F(lq + HI) - OJ~ L ~F(IHI) (1) 
H q + HoI-OIr 

where the sums are over all reciprocal lattice vectors H of the crystal lattice, and OJp is the 
plasma frequency. The dependence upon the electron-ion potential is contained in this 
term 

t This includes some features of the non-local potential, but omits others; see Shaw (1969a). 


